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Sand stirred by chaotic advection
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We study the spatial structure of a granular mateNgbarticles subject to inelastic mutual collisions, when
it is stirred by a bidimensional smooth chaotic flow. A simple dynamical model is introduced where four
different time scales are explicitly consideréid:the Stokes time, accounting for the inertia of the partidies,
the mean collision time among the grairfii,) the typical time scale of the flow, an@) the inverse of the
Lyapunov exponent of the chaotic flow, which gives a typical time for the separation of two initially close
parcels of fluid. Depending on the relative values of these different times, a complex scenario appears for the
long-time steady spatial distribution of particles, where clusters of particles may or may not appear.
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Many different physical processes can be studied in theaccount. At the same time, it is also well known that dissi-
general framework ofransport of finite-size particles by an pative collisions originate particle clusterifg]. Therefore,
external flow Sand suspended on the surface of a river oin spite of its simplicity, we will see that the model shows
driven by the wind, chemical pollutants advected by atmo-many transitions from clustering to unclustering depending
spheric flows, and impurities driven by oceanic currents ar@®n the interplay between the inertia of the particles, the cha-

just but a few of the many important real examples that fitotic flow, and the collisions.
into this. We consideN identical particles of mass=1 on a two-

Recently, much effort coming from thehaotic advection ~dimensional domairl. XL (with periodic boundary condi-
[1] andturbulence[2] communities has been devoted to thetions) driven by an external velocity field(x,t),
study of advection of nonreacting inertial particles by chaotic

or turbulent flows. Though some works considered the effect dvi(t) —_ 1 Y 1y

of elastic collisions see, for example, Ref3], the obvious dt T

fact that in real systems, collisions among particles dissipate

kinetic energy into hedinelastic collision$ has not been, to dxi(t) ¢ 2

our knowledge, much subject of study. From another per- dt =vi(1), 2
spective, the so-callegranular mediacommunity has also

widely considered 4] the properties of particles colliding wherei=1, ... N, v; is the velocity of the particlg 7 is the

inelastically, and externally driven, for example, by a sheaistandard Stokes time that depends on the particles diameter,
flow or by vibrating periodically the container of the par- viscosity, and densities of fluid and particles. Hence the term
ticles [5]. However, the influence of an external chaotic orin the right-hand siddrhs) of Eqg. (1) is simply a viscous
turbulent flow seems to be overcome in the literat(gee, Stokes drag. In addition, the particles are subject to binary
however, Ref[6] for the case of densely packed granularinstantaneous inelastic collisions according to the rule
systemg

In this paper, we try to investigate numerically the full ;o 1+r Aln
problem. Equivalently, we study the effect of collisions on Vi =Viny~ 3~ (Vi = Vi) -, 3)
inertial particles immersed in a flow showing chaotic advec-
tion [7], or rather, the properties of a dilute granular systenwherei andj are the indices of the colliding particles, the
(in the literature the terngranular gas[8] is widely used ~ primes denote the velocities after collision, and[0,1] is
under chaotic stirring. It is by now clear that transport be-the restitution coefficientr(=1 for the elastic cage This
havior in the so-called Batcherlor’s regime, that is, in therule ensures the conservation of momentum, while the ki-
range of scales between the smallest typical length scale ofetic energy is dissipated if<1.
the velocity field and the characteristic diffusion length scale Some further clarifications on the model are worth men-
is equivalent in a turbulent flow and a chaotic advection flow.tioning. In the absence of collisions, Eq$) are simply the

We introduce a simple model of granular material consist-equations of motion of a rigid sphere in a flow where the
ing of many particles subject to inelastic mutual collisions,Faxen corrections, the added mass term, and the Bernoulli
and immersed in a smooth two-dimensional chaotic flowterm are neglecteffl0]. This is a consistent approximation
without gravity. Granular particles are assumed to be muchvhen the particles of granular material are much heavier than
heavier than fluid. In particular, we focus on the steady spathat of the fluid, which is the case we are considering. More-
tial structure of the system. It is known, in fact, that the over, we adopt the direct simulation Monte Ca(l@SMC)
presence of inertia can induce preferential concentratioscheme to integrate the dynamics of the sysfddi. The
[1,2]. One may ask what happens if the diffusive role of DSMC algorithm, widely used in numerical hydrodynamics,
collisions (in the elastic limit among particles is taken into consists of a time discretization with fixed time step: in every
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time step there is a free-flow step and a collision step. In the u,=0,
free-flow step, the motion of particles is integrated according
to Egs. (1) without taking into account the possible colli- uy=—2mLal/Tsin(2m7x/L), (6)

sions. In the collision step, every particle has a probability of

colliding with neighboring particlegin a disk with a radius  if t mod T>T/2.

smaller than the mean free patthe probability of particle This particular flow consists of an alternating sequence of
to collide with particlej is proportional to the relative veloc- sinusoidal shears, oriented along shandy direction for the

ity |v—v;|. This scheme has been proved to converge to thérst and second halves of the peridd respectively. Chang-
solution of the Boltzmann equation of the correspondinging the parametew, the flow can be easily tuned to be
hard disk gas and its key feature(terough the randomiza- laminar, mixed(with both regions of regular and chaotic tra-
tion of collisiong the assumption of molecular chaos, i.e., jectories of particles and chaotic, the one we are interested
lack of correlations for colliding particlesP(v;,v;,t) in. Periodic boundary conditions are assumed, anddfor
=P(v;,t)P(v;,t). It is important to note that this assump- >0.4 a unique chaotic region without KAM tothumeri-
tion does not rule out correlations at scales larger than theally distinguishableis obtained14]. The Lyapunov expo-
scale of a diameter, and the DSMC is often used to studyent for the flow is given by =1.96 In(3.3%)/T and intro-
vortices[12] and other instabilities. In the context of inelas- duces a new time scale;=1/A for the exponential
tic gases, it has been previously used also for the investigaseparation rate of close fluid parcels. Our results have been
tion of the clustering phenomend®]. We think that the checked to be independent of the kind of flow. In partic-
choice of the DSMC algorithm should not pose any problermular, we have alternatively used the cellular flow derived
for the present situation. In fact, the chaoticity of the flowfrom the stream function W(x,y,t)=U sin([nmx
guarantees that the system does not depart too much from theB cos(wt)]/L)sin(hmy/L), whereU is the maximal velocity
molecular chaos hypothesis. of the flow, n the number of cellsB the strength of the time

A statistically stationary state is reached when the dissidependent forcing, ana its frequency[15].
pation of energy because of the inelastic collisions is bal- Depending on the relative values of the above introduced
anced with the continuous energy injection coming from thetime scales:r, T, 7;, and 7., a very complex scenario ap-
external flow[13]. We determine that the statistically station- pears for the spatial distribution of the particles in the sta-
ary state is reached when the typical fluctuations of the totalionary state. Some preliminary general results can be antici-
energy of the systerTE=<vi2>, are rather small, typically pated. For example, it seems obvious that when 7., the
some small percentage & We have also verified the sta- exponential separation produced by the chaotic driving of the
tionarity of the system in our numerical simulations by two fluid may avoid any clustering. The opposite may happen if
other means, which for the sake of brevity we just mention:7.< 7 is the mechanism of aggregation due to inelastic col-
(i) checking that the spatial distributions of particles are stalisions resists the dispersing effect of the chaotic flow. How-
tionary (taking them at different timgsand (ii) calculating ever, as we will see, it is also very important to take into
the quantityH=2_,P(m)In[P(m)], whereP(m) will be in-  account the compaction due to the inertia. In any case, dis-
troduced later, and verifying that is statistically stationary. cussing all the different possibilitigsaking also into account

As already mentioned, the properties of this state are theome values of the parameter goes beyond the scope of
central objective of this work, with special emphasis to thethis paper. Thus, we just restrict ourselves to study some of
clustering of particles. the most interesting cases.

The formal introduction of the collision operator and a  First, we consider the case of irrelevant inertia<T.
dimensionalization of the dynamical system, E¢B. and  Obviously, in the absence of collisions, particles follow
(2), will help in order to see the relevance of the distinctstrictly the fluid and no aggregation appegsee Fig. 13)].
terms. If we denot& as the typical time of the flow, the In fact, 7 is the relaxation time of the particles to the driving
typical length, and~.,/ 7. the collision operator, with, the  flow; without collisions the particles are continuously flow-
mean collision time, we can rewrite E(L) as follows: ing through the entire spatial domain since no KAM tori are

present in the flow. However, everything changes when the
7 collisions are taken into account. Thusrif< 7, the last term
Tq —(vimu)+ —Feor, (4 in Eq. (4) is the most relevant one. If we have also that
€ <7, an aggregation of the particles is always observed for
. . . any value ofr (even, and most noticeably, lat=1). This can
wheret=t/T, vi=Vv;T/L, andu=uT/L. be understood from Eq4), since now the velocity of the

For our numerical studies, we use the time periodic in-particles can be written as

compressible  two-dimensional velocity fieldu(x,t)

= (Ux(x,y,1),uy(x,y,t)) given by

T d\’}l

~ ~ T
v=Uu+ —Feq. (7)
Tc

u,=2mLalTsin(2my/L),
Thus, the effect of collisions is similar to that of inertia when
=0, (5)  considered alonethe velocity of the particles is modified
with respect to that of the fluid parcels, then it is no longer

if tmodT<T/2, and compressiblgV -v#0), and there are regions where par-
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FIG. 1. Spatial distribution of particles in the steady state, when F.lG' 3 _Spatlal distribution of particles in the steady stat_e when
. AN . . the inertia is relevanty>T. (a) Corresponds to the case without
the inertia is irrelevanfor almosj, 7<T. (a) Case with no colli- collisions. HereT=1. a=0.5. andr=10. The number of particles
sions.T=10, «=10 (r;~2), andr=0.1. The number of particles is I\:—ISOd and thta_fir;acltt_imé éOQb)Tgamé as beL;ore but EowI with
is N=500 and the final time 500(b) Same as before but with N . . ; ’
. - — _ almost elastic collisions, with.<7;. Here,r=0.99, 7.=0.1, 7;
almost elastic collisions and.<<7;. Here,r=0.99, 7.=0.01, =; L . -

e . o ~1. (c) Same as before, but with inelastic collisions; 0.75 (here
~2. (c) Same as before but with inelastic collisions: 0.6. (d) the final time is 175 as the program breaks because of collapse
Also the case of inelastic collisions, but naw< 7.. The number earlieit) (d)l A|Sé) the case of ir?elzgstic collisions butun < P
of particles isN=200 andT=0.2, a=1 (7=0.08), 7=0.2, 7. ) . i ' ORVS T -
—01 andr=0.1. Final time is 500 units. The number of particles isl=200 andT=0.2, a=1 (7=~0.08),

’ =2, 7.=0.2, andr=0.75. Final time is 500 units.

ticles aggregateFigures 1b) and Xc) show a snapshot of On the contrary, whem;< 7 (and alsor,<7), the strong
the distribution of particles for=0.99 andr=0.6, respec- chaoticity of the flow dominates and avoids the formation of
tively. It is also very important to note here a specific behav-any clustering in the system, see Figd) In this last case, if

ior of elastic or quasielastic collisions£1). The effect of the density of particles is kept equal to the previous simula-
multiple elastic collisions is equivalent to macroscopic diffu- tions, the strong chaoticity of the flow can give rise to an
sion, which, if large enough, may induce a dispersing mechaincreasing of the collision rate. Therefore, to obtain the cor-
nism that prevents clustering. Summing up, one can say th&ect inequalityr;> 7., we have reduced the densfip Figs.
elastic collisions induce a clustering inertialike effect thatl(d) and 3d) the number of particles was set d=200
disappears when diffusion is strong enough. Quantitativelyinstead ofN=500]. Finally, it is obvious from Eq(4) that
this is controlled by the adimensional parametér, since  the limit 7< 7 is equivalent to the absence of collisions, thus
the macroscopic diffusivitp =1/, . Increasingr/ 7. cluster- o clustering appears.

ing like that in Fig. 1b) disappears and a homogeneous dis- A more quantitative analysis of clustering follows. This is
tribution is attainedsee discussion below on tim) func-  performed via a particle-in-cell histogram, i.e., after dividing
tion and Fig. 2a)]. the system irM small boxegwe useN/M =5) a histogram
made with the number of boxes containingparticles de-
noted the corresponding function 8m). For a homoge-
neous system of particlef(m) is a Poisson distribution
exp(=M\)A\"m!, whereA=N/M. As the clustering is devel-
oped to be stronger, the deviations from a Poissonian are
more evident. Figure () calculatesP(m) for the patterns
shown in Fig. 1, and another additional case. We observe the

no collisions (Fig. 1a)

r=0.99 (1 <1) (Fig. 1b)
r=0.6 (1 <7) (Fig. Ic)

r=0.99 (‘Cc<<1:)

strong chaos (Fig. 1d)

...... ]

appearance of clustering fox1, and even for~1. Also,

c 'r‘;’;;’;"s(;",'; e it is shown how for the elastic case the Poisson distribution is
o =075 (Fig. 3c) approached when/7.<1.
4 strong chaos (Fig. 3d) Itis relevant to know the effect of collisions in the context
00,000 of transport of inertial particles in chaotic flows. Therefore,
0900000, ] : o .
. 00%0 o ock we next consider the general case where the inertial term is
30 a0 50 relevant,7=T [but otherwiser is small enough such that the

left-hand side of Eq(4) is not negligible with respect to first
FIG. 2. Distribution of clusters for the same cases shown interm on the rhk It is well known[2] that, in the absence of
Figs. 1(above and 3(below). The solid line is the analytical Pois- collisions, heavy particles accumulate in regions of low
son distribution. In the legends of the figures we indicate the spatiastrain and high vorticity, the so-called preferential concentra-
structure in Fig. 1 or 3 to which thB(m) function corresponds.  tion phenomenon. In our case, the clustering steady pattern is
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shown in Fig. 8a). After including collisions one has i For completeness, we briefly mention the limit T. This
<171, no effect is observed as the last term on the rhs of Eqis completely equivalent to a freely cooling granular gas
(4) can be neglected. A different behavior is observed whersince the external flow is irrelevant. Thus, clustering is usu-
7.<7. Regardless of the value af, in the limit of elastic  ally observed for inelastic collisiori46].

collisions (~1), no aggregation of the particles is ob- In this paper, we have studied numerically the stationary
served, Fig. @). As explained before, whew/ 7 is large, spatial structure of a granular material advected by a chaotic
the continuous elastic colliding processes of the particles inflow. We have seen that the relative importance of collisions,
duce a diffusive effect that prevents clustering. On the coninertia, and chaoticity of the flow gives rise to transitions
trary, as we go into the inelastic regimes.1, thechaotic  from homogeneous to inhomogeneous density of grains. We
time scaler; now plays a very important role. Thus, when think that our simple model is relevant for real physical phe-
7.< ¢, particles aggregate although in a very different pat-nomena that involve the transport of a large amount of heavy
tern to that obtained in the absence of collisipRy. 3(c)].  particles, for example, those appearing in many geophysical
In particular, at variance with clustering in the absence ofsituations.

collisions[see Fig. 8a)], clusters are created and destroyed

continuously, and moving with the flow. In this case, the We acknowledge fruitful discussions with Andrea Baldas-
particles aggregate due to the inelastic collisions and becausarri, Fabio Cecconi, Umberto Marini Bettolo Marconi, and
the flow is not chaotic enough to disperse completely theAngelo Vulpiani, and Emilio Heriadez-Gara for a critical
clusters. The opposite is observed, Figd)3when 7;<7; reading of the manuscript. C.L. acknowledges support from
the clusters do not resist the dispersion of the flow and th¢he Spanish MECD. A.P. acknowledges support from the
density of particles is homogeneous. The corresponding\NFM Center for Statistical Mechanics and Complexity
P(m) function is plotted in Fig. &). (SMC).
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