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Sand stirred by chaotic advection
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We study the spatial structure of a granular material,N particles subject to inelastic mutual collisions, when
it is stirred by a bidimensional smooth chaotic flow. A simple dynamical model is introduced where four
different time scales are explicitly considered:~i! the Stokes time, accounting for the inertia of the particles,~ii !
the mean collision time among the grains,~iii ! the typical time scale of the flow, and~iv! the inverse of the
Lyapunov exponent of the chaotic flow, which gives a typical time for the separation of two initially close
parcels of fluid. Depending on the relative values of these different times, a complex scenario appears for the
long-time steady spatial distribution of particles, where clusters of particles may or may not appear.
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Many different physical processes can be studied in
general framework oftransport of finite-size particles by a
external flow. Sand suspended on the surface of a river
driven by the wind, chemical pollutants advected by atm
spheric flows, and impurities driven by oceanic currents
just but a few of the many important real examples that
into this.

Recently, much effort coming from thechaotic advection
@1# and turbulence@2# communities has been devoted to t
study of advection of nonreacting inertial particles by chao
or turbulent flows. Though some works considered the ef
of elastic collisions, see, for example, Ref.@3#, the obvious
fact that in real systems, collisions among particles dissip
kinetic energy into heat~inelastic collisions! has not been, to
our knowledge, much subject of study. From another p
spective, the so-calledgranular mediacommunity has also
widely considered@4# the properties of particles colliding
inelastically, and externally driven, for example, by a sh
flow or by vibrating periodically the container of the pa
ticles @5#. However, the influence of an external chaotic
turbulent flow seems to be overcome in the literature~see,
however, Ref.@6# for the case of densely packed granu
systems!.

In this paper, we try to investigate numerically the fu
problem. Equivalently, we study the effect of collisions
inertial particles immersed in a flow showing chaotic adv
tion @7#, or rather, the properties of a dilute granular syst
~in the literature the termgranular gas@8# is widely used!
under chaotic stirring. It is by now clear that transport b
havior in the so-called Batcherlor’s regime, that is, in t
range of scales between the smallest typical length scal
the velocity field and the characteristic diffusion length sc
is equivalent in a turbulent flow and a chaotic advection flo

We introduce a simple model of granular material cons
ing of many particles subject to inelastic mutual collision
and immersed in a smooth two-dimensional chaotic fl
without gravity. Granular particles are assumed to be m
heavier than fluid. In particular, we focus on the steady s
tial structure of the system. It is known, in fact, that t
presence of inertia can induce preferential concentra
@1,2#. One may ask what happens if the diffusive role
collisions ~in the elastic limit! among particles is taken int
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account. At the same time, it is also well known that dis
pative collisions originate particle clustering@9#. Therefore,
in spite of its simplicity, we will see that the model show
many transitions from clustering to unclustering depend
on the interplay between the inertia of the particles, the c
otic flow, and the collisions.

We considerN identical particles of massm51 on a two-
dimensional domainL3L ~with periodic boundary condi-
tions! driven by an external velocity fieldu(x,t),

dvi~ t !

dt
52

1

t
@vi~ t !2u„xi~ t !,t…#, ~1!

dxi~ t !

dt
5vi~ t !, ~2!

wherei 51, . . . ,N, vi is the velocity of the particlei, t is the
standard Stokes time that depends on the particles diam
viscosity, and densities of fluid and particles. Hence the te
in the right-hand side~rhs! of Eq. ~1! is simply a viscous
Stokes drag. In addition, the particles are subject to bin
instantaneous inelastic collisions according to the rule

vi ( j )8 5vi ( j )2
11r

2
~~vi ( j )2vj ( i )!•n̂!n̂, ~3!

where i and j are the indices of the colliding particles, th
primes denote the velocities after collision, andr P@0,1# is
the restitution coefficient (r 51 for the elastic case!. This
rule ensures the conservation of momentum, while the
netic energy is dissipated ifr ,1.

Some further clarifications on the model are worth me
tioning. In the absence of collisions, Eqs.~1! are simply the
equations of motion of a rigid sphere in a flow where t
Faxen corrections, the added mass term, and the Bern
term are neglected@10#. This is a consistent approximatio
when the particles of granular material are much heavier t
that of the fluid, which is the case we are considering. Mo
over, we adopt the direct simulation Monte Carlo~DSMC!
scheme to integrate the dynamics of the system@11#. The
DSMC algorithm, widely used in numerical hydrodynamic
consists of a time discretization with fixed time step: in eve
©2003 The American Physical Society02-1
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time step there is a free-flow step and a collision step. In
free-flow step, the motion of particles is integrated accord
to Eqs. ~1! without taking into account the possible coll
sions. In the collision step, every particle has a probability
colliding with neighboring particles~in a disk with a radius
smaller than the mean free path!: the probability of particlei
to collide with particlej is proportional to the relative veloc
ity uvi2vj u. This scheme has been proved to converge to
solution of the Boltzmann equation of the correspond
hard disk gas and its key feature is~through the randomiza
tion of collisions! the assumption of molecular chaos, i.
lack of correlations for colliding particles,P(vi ,vj ,t)
5P(vi ,t)P(vj ,t). It is important to note that this assump
tion does not rule out correlations at scales larger than
scale of a diameter, and the DSMC is often used to st
vortices@12# and other instabilities. In the context of inela
tic gases, it has been previously used also for the invest
tion of the clustering phenomenon@9#. We think that the
choice of the DSMC algorithm should not pose any probl
for the present situation. In fact, the chaoticity of the flo
guarantees that the system does not depart too much from
molecular chaos hypothesis.

A statistically stationary state is reached when the di
pation of energy because of the inelastic collisions is b
anced with the continuous energy injection coming from
external flow@13#. We determine that the statistically statio
ary state is reached when the typical fluctuations of the t
energy of the system,E5^v i

2&, are rather small, typically
some small percentage ofE. We have also verified the sta
tionarity of the system in our numerical simulations by tw
other means, which for the sake of brevity we just menti
~i! checking that the spatial distributions of particles are s
tionary ~taking them at different times!, and ~ii ! calculating
the quantityH5(mP(m)ln@P(m)#, whereP(m) will be in-
troduced later, and verifying thatH is statistically stationary.

As already mentioned, the properties of this state are
central objective of this work, with special emphasis to t
clustering of particles.

The formal introduction of the collision operator and
dimensionalization of the dynamical system, Eqs.~1! and
~2!, will help in order to see the relevance of the distin
terms. If we denoteT as the typical time of the flow,L the
typical length, andFcol /tc the collision operator, withtc the
mean collision time, we can rewrite Eq.~1! as follows:

t

T

dv̂i

d t̂
52~ v̂i2û!1

t

tc
Fcol , ~4!

where t̂5t/T, v̂i5viT/L, andû5uT/L.
For our numerical studies, we use the time periodic

compressible two-dimensional velocity fieldu(x,t)
5„ux(x,y,t),uy(x,y,t)… given by

ux52pLa/T sin~2py/L !,

uy50, ~5!

if t mod T,T/2, and
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ux50,

uy522pLa/T sin~2px/L !, ~6!

if t mod T.T/2.
This particular flow consists of an alternating sequence

sinusoidal shears, oriented along thex andy direction for the
first and second halves of the period,T, respectively. Chang-
ing the parametera, the flow can be easily tuned to b
laminar, mixed~with both regions of regular and chaotic tra
jectories of particles!, and chaotic, the one we are interest
in. Periodic boundary conditions are assumed, and foa
.0.4 a unique chaotic region without KAM tori~numeri-
cally distinguishable! is obtained@14#. The Lyapunov expo-
nent for the flow is given byl51.96 ln(3.35a)/T and intro-
duces a new time scalet f51/l for the exponential
separation rate of close fluid parcels. Our results have b
checked to be independent of the kind of flow. In part
ular, we have alternatively used the cellular flow deriv
from the stream function C(x,y,t)5U sin„@npx
1B cos(vt)#/L…sin(npy/L), whereU is the maximal velocity
of the flow,n the number of cells,B the strength of the time
dependent forcing, andv its frequency@15#.

Depending on the relative values of the above introdu
time scales:t, T, t f , andtc , a very complex scenario ap
pears for the spatial distribution of the particles in the s
tionary state. Some preliminary general results can be an
pated. For example, it seems obvious that whent f,tc , the
exponential separation produced by the chaotic driving of
fluid may avoid any clustering. The opposite may happen
tc,t f is the mechanism of aggregation due to inelastic c
lisions resists the dispersing effect of the chaotic flow. Ho
ever, as we will see, it is also very important to take in
account the compaction due to the inertia. In any case,
cussing all the different possibilities~taking also into accoun
some values of the parameterr ) goes beyond the scope o
this paper. Thus, we just restrict ourselves to study som
the most interesting cases.

First, we consider the case of irrelevant inertia,t!T.
Obviously, in the absence of collisions, particles follo
strictly the fluid and no aggregation appears@see Fig. 1~a!#.
In fact, t is the relaxation time of the particles to the drivin
flow; without collisions the particles are continuously flow
ing through the entire spatial domain since no KAM tori a
present in the flow. However, everything changes when
collisions are taken into account. Thus, iftc,t, the last term
in Eq. ~4! is the most relevant one. If we have also thattc
,t f , an aggregation of the particles is always observed
any value ofr ~even, and most noticeably, atr 51). This can
be understood from Eq.~4!, since now the velocity of the
particles can be written as

v̂'û1
t

tc
Fcol . ~7!

Thus, the effect of collisions is similar to that of inertia whe
considered alone:the velocity of the particles is modifie
with respect to that of the fluid parcels, then it is no long

compressible(“• v̂Þ0), and there are regions where par
2-2
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ticles aggregate. Figures 1~b! and 1~c! show a snapshot o
the distribution of particles forr 50.99 andr 50.6, respec-
tively. It is also very important to note here a specific beh
ior of elastic or quasielastic collisions (r'1). The effect of
multiple elastic collisions is equivalent to macroscopic diff
sion, which, if large enough, may induce a dispersing mec
nism that prevents clustering. Summing up, one can say
elastic collisions induce a clustering inertialike effect th
disappears when diffusion is strong enough. Quantitativ
this is controlled by the adimensional parametert/tc since
the macroscopic diffusivityD}1/tc . Increasingt/tc cluster-
ing like that in Fig. 1~b! disappears and a homogeneous d
tribution is attained@see discussion below on theP(m) func-
tion and Fig. 2~a!#.

FIG. 1. Spatial distribution of particles in the steady state, wh
the inertia is irrelevant~or almost!, t,T. ~a! Case with no colli-
sions.T510, a510 (t f'2), andt50.1. The number of particles
is N5500 and the final time 500.~b! Same as before but with
almost elastic collisions andtc!t f . Here, r 50.99, tc50.01, t f

'2. ~c! Same as before but with inelastic collisions,r 50.6. ~d!
Also the case of inelastic collisions, but nowt f!tc . The number
of particles isN5200 andT50.2, a51 (t f'0.08), t50.2, tc

50.1, andr 50.1. Final time is 500 units.

FIG. 2. Distribution of clusters for the same cases shown
Figs. 1~above! and 3~below!. The solid line is the analytical Pois
son distribution. In the legends of the figures we indicate the spa
structure in Fig. 1 or 3 to which theP(m) function corresponds.
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On the contrary, whent f,tc ~and alsotc!t), the strong
chaoticity of the flow dominates and avoids the formation
any clustering in the system, see Fig. 1~d!. In this last case, if
the density of particles is kept equal to the previous simu
tions, the strong chaoticity of the flow can give rise to
increasing of the collision rate. Therefore, to obtain the c
rect inequalityt f.tc , we have reduced the density@in Figs.
1~d! and 3~d! the number of particles was set toN5200
instead ofN5500]. Finally, it is obvious from Eq.~4! that
the limit t!tc is equivalent to the absence of collisions, th
no clustering appears.

A more quantitative analysis of clustering follows. This
performed via a particle-in-cell histogram, i.e., after dividin
the system inM small boxes~we useN/M55) a histogram
made with the number of boxes containingm particles de-
noted the corresponding function asP(m). For a homoge-
neous system of particles,P(m) is a Poisson distribution
exp(2l)lm/m!, wherel5N/M . As the clustering is devel-
oped to be stronger, the deviations from a Poissonian
more evident. Figure 2~a! calculatesP(m) for the patterns
shown in Fig. 1, and another additional case. We observe
appearance of clustering forr ,1, and even forr'1. Also,
it is shown how for the elastic case the Poisson distributio
approached whent/tc!1.

It is relevant to know the effect of collisions in the conte
of transport of inertial particles in chaotic flows. Therefor
we next consider the general case where the inertial term
relevant,t>T @but otherwiset is small enough such that th
left-hand side of Eq.~4! is not negligible with respect to firs
term on the rhs#. It is well known @2# that, in the absence o
collisions, heavy particles accumulate in regions of lo
strain and high vorticity, the so-called preferential concent
tion phenomenon. In our case, the clustering steady patte

n

n

al

FIG. 3. Spatial distribution of particles in the steady state wh
the inertia is relevant,t.T. ~a! Corresponds to the case withou
collisions. Here,T51, a50.5, andt510. The number of particles
is N5500 and the final time 500.~b! Same as before, but now with
almost elastic collisions, withtc!t f . Here, r 50.99, tc50.1, t f

'1. ~c! Same as before, but with inelastic collisions,r 50.75~here
the final time is 175 as the program breaks because of colla
earlier!. ~d! Also the case of inelastic collisions, but nowt f!tc .
The number of particles isN5200 andT50.2, a51 (t f'0.08),
t52, tc50.2, andr 50.75. Final time is 500 units.
2-3
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C. LÓPEZ AND A. PUGLISI PHYSICAL REVIEW E67, 041302 ~2003!
shown in Fig. 3~a!. After including collisions one has ift
!tc , no effect is observed as the last term on the rhs of
~4! can be neglected. A different behavior is observed wh
tc!t. Regardless of the value oft f , in the limit of elastic
collisions (r'1), no aggregation of the particles is o
served, Fig. 3~b!. As explained before, whent/tc is large,
the continuous elastic colliding processes of the particles
duce a diffusive effect that prevents clustering. On the c
trary, as we go into the inelastic regime,r ,1, the chaotic
time scalet f now plays a very important role. Thus, whe
tc,t f , particles aggregate although in a very different p
tern to that obtained in the absence of collisions@Fig. 3~c!#.
In particular, at variance with clustering in the absence
collisions @see Fig. 3~a!#, clusters are created and destroy
continuously, and moving with the flow. In this case, t
particles aggregate due to the inelastic collisions and bec
the flow is not chaotic enough to disperse completely
clusters. The opposite is observed, Fig. 3~d!, whent f,tc ;
the clusters do not resist the dispersion of the flow and
density of particles is homogeneous. The correspond
P(m) function is plotted in Fig. 2~b!.
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For completeness, we briefly mention the limitt@T. This
is completely equivalent to a freely cooling granular g
since the external flow is irrelevant. Thus, clustering is u
ally observed for inelastic collisions@16#.

In this paper, we have studied numerically the station
spatial structure of a granular material advected by a cha
flow. We have seen that the relative importance of collisio
inertia, and chaoticity of the flow gives rise to transitio
from homogeneous to inhomogeneous density of grains.
think that our simple model is relevant for real physical ph
nomena that involve the transport of a large amount of he
particles, for example, those appearing in many geophys
situations.
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